
Page	1	of	5	

Software	Engineering	265	
Software	Development	Methods	

Summer	2019	

Assignment	2	

Due:	Thursday,	July	4,	11:55	pm	by	submission	via	git	
(no	late	submissions	accepted)	

	

Programming	environment	

For	this	assignment	please	ensure	your	work	executes	correctly	on	the	Linux	
machines	in	ELW	B238.	You	are	welcome	to	use	your	own	laptops	and	desktops	for	
much	of	your	programming;	if	you	do	this,	give	yourself	a	few	days	before	the	due	
date	to	iron	out	any	bugs	in	the	Python	3	program	you	have	uploaded	to	the	BSEng	
machines.	(Bugs	in	this	kind	of	programming	tend	to	be	platform	specific,	and	
something	that	works	perfectly	at	home	may	end	up	crashing	on	a	different	
hardware	configuration.)	

When	evaluating	your	submission,	the	teaching	team	will	use	the	environment	
established	by	the	setSENG265	command	that	is	available	on	the	lab	workstations.	

	

Individual	work	

This	assignment	is	to	be	completed	by	each	individual	student	(i.e.,	no	group	work).	
Naturally	you	will	want	to	discuss	aspects	of	the	problem	with	fellow	students,	and	
such	discussion	is	encouraged.	However,	sharing	of	code	fragments	is	strictly	
forbidden	without	the	express	written	permission	of	the	course	instructor	
(Zastre).	If	you	are	still	unsure	regarding	what	is	permitted	or	have	other	questions	
about	what	constitutes	appropriate	collaboration,	please	contact	me	as	soon	as	
possible.	(Code-similarity	analysis	tools	will	be	used	to	examine	submitted	
programs.)	

	

Objectives	of	this	assignment	

• Learn	to	use	basic	features	of	the	Python	language.	
• Use	the	Python	3	programming	language	to	write	a	less	resource-restricted	

implementation	of	calprint	(but	without	using	regular	expressions	or	
user-defined	classes).	

• Use	Git	to	manage	changes	in	your	source	code	and	annotate	the	evolution	of	
your	solution	with	messages	provided	during	commits.	

• Test	your	code	against	the	15	provided	test	cases	from	assignment	#1.	



Page	2	of	5	

calprint2.py:	Returning	to	the	problem	

For	this	assignment	please	use	the	description	of	the	problem	as	provided	at	the	end	
of	this	document,	and	also	use	the	assignment	#1	test	files.	Some	of	the	limits	that	
were	placed	on	certain	values	are	no	longer	needed	(e.g.,	maximum	number	of	
events,	maximum	line	length,	etc.).		

However,	the	arguments	used	for	the	Python	script	will	be	slightly	different.	You	
will	indicate	the	range	of	dates	to	be	used	to	generate	the	schedule	by	providing	“--
start”	and	“--end”	arguments.	Note	also	that	the	script	is	named	“calprint2.py”	
(and	not	“calprint.py”).	

./calprint2.py --start=18/6/2019 --end=18/6/2019 --file=one.ics 

As	with	the	first	assignment,	all	output	is	to	stdout.	You	must	test	the	output	of	
your	program	in	the	same	manner	as	with	assignment	#1	(i.e.,	using	diff).	

However,	I	will	place	four	different	kinds	of	constraints	on	your	program.	

1. For	this	assignment	you	are	not	to	use	regular	expressions.	We	will	
instead	use	these	in	assignment	#3	in	order	to	write	a	more	powerful	version	
of	the	program	that	processes	more	complex	.ics	files.	

2. You	must	not	write	your	own	classes	as	this	will	be	work	for	assignment	
#3.	

3. You	must	not	use	global	variables.			
4. You	must	make	good	use	of	functional	decomposition.	Phrased	another	

way,	your	submitted	work	must	not	contain	one	or	two	giant	functions	
where	all	of	your	program	logic	is	concentrated.	

	

Exercises	for	this	assignment	

1. Within	your	Git	repo	ensure	there	is	an	“a2”	subdirectory.	(For	testing	please	
use	the	files	provided	for	assignment	#1.	)Your	“calprint2.py”	script	must	
be	located	in	this	“a2”	directory.	Note	that	a	starter	calprint2.py	file	is	
available	for	you	in	the	/home/zastre/seng265/a2	directory.	
	

2. Write	your	program.	Amongst	other	tasks	you	will	need	to:	
• read	text	input	from	a	file,	line	by	line	
• write	output	to	the	terminal	
• extract	substrings	from	lines	produced	when	reading	a	file	
• create	and	use	lists	in	a	non-trivial	array.	

	
3. Keep	all	of	your	code	in	one	file	for	this	assignment.	In	assignment	#3	we	

will	use	the	multiple-module	and	class	features	of	Python.	Please	ensure	you	
also	respect	all	of	the	other	constraints	described	earlier	in	this	document.	
	



Page	3	of	5	

4. Use	the	test	files	and	listed	test	cases	to	guide	your	implementation	effort.	
Refrain	from	writing	the	program	all	at	once,	and	budget	time	to	anticipate	
when	“things	go	wrong”.	
	

5. For	this	assignment	you	can	assume	all	test	inputs	will	be	well-formed	(i.e.,	
our	teaching	assistant	will	not	test	your	submission	for	handling	of	input	or	
for	arguments	containing	errors).	Assignments	3	and	4	may	specify	error-
handling	as	part	of	the	assignment.	

	

What	you	must	submit	

• A	single	Python	source	file	named	“calprint2.py”	within	your	Git	
repository	containing	a	solution	to	assignment	#2.	

• No	regular-expressions,	global	variables,	or	user-defined	classes	are	to	be	
used	for	assignment	#2.	

	

Evaluation	

Our	grading	scheme	is	relatively	simple.	

• “A”	grade:	A	submission	completing	the	requirements	of	the	assignment	
which	is	well-structured	and	very	clearly	written.	All	tests	pass	and	therefore	
no	extraneous	output	is	produced.		

• “B”	grade:	A	submission	completing	the	requirements	of	the	assignment.	
calprint2.py	runs	without	any	problems;	that	is,	all	tests	pass	and	
therefore	no	extraneous	output	is	produced.	

• “C”	grade:	A	submission	completing	most	of	the	requirements	of	the	
assignment.	calprint2.py	runs	with	some	problems.	

• “D”	grade:	A	serious	attempt	at	completing	requirements	for	the	assignment.	
calprint2.py	runs	with	quite	a	few	problems;	some	non-trivial	tests	pass.	

• “F”	grade:	Either	no	submission	given,	or	submission	represents	very	little	
work,	or	no	tests	pass.	

	



Page	4	of	5	

calprint, version 2 

 

The program will be a Python program. Its name must be “calprint2.py” 
and it must be found in the “a2” sub-directory of your SENG 265 git 
project. 

Input specification: 

1. All input is from ASCII test files. 
2. Data lines for an “event” begin with a line “BEGIN:VEVENT” and 

end with a line “END:VEVENT”. 
3. Starting time: An event’s starting date and time is contained 

on a line of the format “DTSTART:<icalendardate>” where the 
characters following the colon comprise the date/time in 
icalendar format. 

4. Ending time: An event’s ending date and time is contained on a 
line of the format “DTEND:<icalendardate>” where the 
characters following the colon comprise the date/time in 
icalendar format. 

5. Event location: An event’s location is contained on a line of 
the format “LOCATION:<string>” where the characters following 
the colon comprise the string describing the event location. 
These strings will never contain the “:” character. 

6. Event description: An event’s description is contained on a 
line of the format “SUMMARY:<string>” where the characters 
following the colon comprise the string describing the event’s 
nature. These strings will never contain the “:” character. 

7. Repeat specification: If an event repeats, this will be 
indicated by a line of the format 
“RRULE:FREQ=<frequency>;UNTIL=<icalendardate>”. The only 
frequencies you must account for are weekly frequencies. The 
date indicated by UNTIL is the last date on which the event 
will occur (i.e., is inclusive). Note that this line contains 
a colon (“:”) and semicolon (“;”) and equal signs (“=”). 

8. Events within the input stream are not necessarily in 
chronological order. 

9. Events may overlap in time. 
10. No event will ever cross a day boundary. 
11. All times are local time (i.e., no timezones will appear in a 

date/time string). 



Page	5	of	5	

Output specification: 

1. All output is to stdout. 
2. All events which occur from 12:00 am on the --start date and to 

11:59 pm on the --end date must appear in chronological order 
based on the event’s starting time that day. 

3. If events occur on a particular date, then that date must be 
printed only once in the following format: 
 
<month text> <day>, <year> (<day of week>) 
------------------------------------------ 
 
Note that the line of dashes below the date must match the 
length of the date. You may use Python’s datetime module in 
order to create the calendar-date line. 

4. Days are separated by a single blank line. There is no blank 
line at the start or at the end of the program’s output. 

5. Starting and ending times given in 12-hour format with “am” and 
“pm” as appropriate. For example, five minutes after midnight 
is represented as “12:05 am”. 

6. A colon is used to separate the start/end times from the event 
description 

7. The event SUMMARY text appears on the same line as the even 
time. (This text may include parentheses.) 

8. The event LOCATION text appears on after the SUMMARY text and 
is surrounded by square brackets. 
 

Events from the same day are printed on successive lines in 
chronological order by starting time. Do not use blank lines to separate 
the event lines within the same day. 

In the case of tests provided by the instructor, the Unix “diff” utility 
will be used to compare your program’s output with what is expected for 
that test. Significant differences reported by “diff” may result in 
grade reductions. 
	

	


